

TOT Program Course Syllabus

Course Title: SPIKE PRIME Robotics – Python coding

Prerequisites: Basics of python

Credit hours: 15

Target audience: Trainers and Teachers

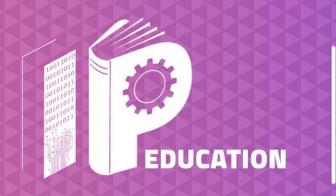
Course Description:

This is a TOT course meant for trainers who are interested in teaching and training the cutting-edge LEGO Robotics platform (SPIKE PRIME) which is the substitute for the EV3 platform. Trainees are going to step up their coding skills by getting specialized hands-on training based on python language to program spike robots. Starting from the design issues such as (building-pieces uses, movement systems, structuring robots' bases ...etc.), passing by the electronic components and their uses, coding skills, and not ending with a lot of implementations and practical applications.

The Content	Duration (hour)
Subject 1: Basics	16
Variables & Data types	
General purposes functions	
Numeric Operations	
String Operations	
Logic Operations	
Implementations	
Subject 2: Control Statements	
(if) statement	
(for) statement	
(while) statement	
Nested loop	
 Implementations 	
Subject 3: Lists and Tuples	
• 1D & 2D lists	
• 1D tuples	
Methods in use	
 Implementations 	
Subject 4: Utilizing The Hub	
 Modules, submodules, and methods in use Implementations 	
Subject 5: Straight movement & Relative position	
Modules, submodules, and methods in use	
Synchronous(p) commands vs Asynchronous(a) commands	
Asynchronous commands stategy1 Implementations	
ImplementationsBuilding Custom Functions	
Subject 6: Rotation around the z-axis	
 Motion (gyro) sensor 	
 Modules, submodules, and methods in use 	
Constant Motor-speed technique	
 Implementations 	

Subject 7: Sensors Operation

- The Force sensor
- The Distance sensor
- The Color sensor
- Modules, submodules, and methods in use
- Implementations


<u>Learning Objectives</u>: By the end of this course, trainees will:

1. Knowledge and Understanding

- A. Understand the basics and fundamentals of text-based coding through python language.
- B. Deeply, understand the required programming skills to use in practical implementations such as programming a robot.
- C. Comprehend the framework of writing a "clean" functional piece of code.

2. Skills and capabilities:

- A. Write simple to mid-levelled pieces of code.
- B. Use many programmatic commands and programming skills to control and program spike prime robots to perform various missions.
- C. Develop and effectively employ the skill of problem-solving, to find different programmatic solutions, many of thinking approaches as well.
- D. Acquire and develop a bunch of relevant engineering skills and practices.

The state of being expert www.IPEducation.Co